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Received 6 July 2000

Abstract. We study small symmetrical clusters of magnetic ions with Heisenberg anti-
ferromagnetic exchange interaction. We calculate the magnetization and the specific heat as
functions of applied magnetic field at zero and non-zero temperature. Results are given for both
classical and quantum systems. At zero temperature the classical systems undergo a series of
transitions where the symmetry changes as a function of applied field. The quantum systems show
similar features to Ising systems previously studied.

1. Introduction

Ten years ago Stern–Gerlach-type experiments were first used to measure the magnetic
properties of small atomic clusters [1, 2]. It soon became evident that small clusters of Fe
and Co atoms behave at low, but not too low, temperatures as superparamagnets [3, 4]. As
the anisotropy energies of these clusters are not very high, above the ‘blocking temperature’
their total magnetic momenta will turn in a Stern–Gerlach magnetic field via exchange of
angular momentum with the rotational degrees of freedom of the clusters. Most of the
observed magnetic properties of small ferromagnetic clusters could be attributed to this kind of
superparamagnetic behaviour. Some observations, notably that of the increasing magnetization
with increasing temperature of very small Fe clusters, have, however, remained controversial
to date. Obviously similar experiments would be difficult to do on antiferromagnetic clusters
even when they have a small non-zero magnetization due to unpaired spins.

Recently another way of producing magnetic ‘clusters’ has attracted great interest. These
clusters are formed by magnetic ions inside a large molecule of otherwise non-magnetic atoms.
A crystal can then be formed in which the magnetic molecules are embedded in a non-magnetic
matrix such that there is essentially no magnetic interaction between different molecules.
Because there are large numbers of identical, non-interacting molecules, the properties of
individual molecules can be easily studied. The observed magnetic properties are therefore
determined by the strong exchange interactions between the magnetic ions in the molecule
together with terms resulting from structural anisotropy.

The most commonly studied of these materials is Mn12O12(CH3COO)16(H2O)4 in which
the cluster is a group of twelve Mn atoms. This group contains a central tetrahedron of Mn4+

(S = 3/2) atoms and eight Mn3+ (S = 2) atoms arranged around it. The exchange interactions
cause the central atoms to point parallel to each other with the outer atoms all pointing in the
opposite direction, giving a ground state with S = 10. In fact these magnetic molecules
behave very much as the superparamagnets formed by small ferromagnetic clusters described
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above [5–12]. One of the most interesting features of these molecules has been the relaxation
of their magnetic moments when the external magnetic field is reversed.

Another widely studied material is Fe8-triazacyclononane, in which the magnetic cluster
is an arrangement of eight Fe atoms [13–17]. Again the behaviour is superparamagnetic.

Clearly these particular molecules are not examples of antiferromagnetic clusters but they
do indicate that chemists can now construct materials with large numbers of identical clusters
with clearly defined symmetry and interesting magnetic properties. It seems likely that similar
materials with antiferromagnetic clusters could be constructed.

On the other hand, there is very recent theoretical evidence that in small atomic clusters
the sign of the effective exchange interaction between adjacent spins can vary, depending on
the size and geometry of the cluster [18–21]. It is thus possible that interesting magnetic
properties could still be found for very small atomic clusters which have not so far been
investigated experimentally.

Although the properties of small ferromagnetic clusters of atoms are now well understood,
much less is known about antiferromagnetic clusters. Only the extreme anisotropic limit in
which the interaction is Ising-like has been studied [22]. Their magnetization as a function of
applied field has been studied together with some effects caused by surface spins and lattice
distortions. Many of these systems are frustrated since their structures are such that they contain
triangles of nearest-neighbour spins. One might expect that Heisenberg exchange rather than
Ising exchange would introduce differences, some of which could be significant and, in any
case, Heisenberg interactions are more realistic. A study of the classical ground states of
these systems, which are not obvious except at large applied fields, could also be useful in
dealing with systems with large spin which cannot be easily handled quantum mechanically.
Consequently, we feel that numerical and analytic studies of the zero- and low-temperature
behaviour of small antiferromagnetic clusters are worthwhile.

In this paper we study the small clusters shown in figure 1.

OCT-6                        FCC-12                      FCC-13                      ICO-12

 ICO-13                      HCP-12                      HCP-13                      FCC-19

Figure 1. The eight clusters studied in this paper.
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We assume that all interactions are nearest neighbour and are antiferromagnetic with the
same strength. The Hamiltonian is the usual Heisenberg interaction

H = B
∑

i

Szi + J
∑

〈i,j〉
Si · Sj (1)

where 〈i, j〉 are all nearest-neighbour pairs of magnetic atoms. J is the antiferromagnetic
exchange interaction which will be put equal to +1 from now on. The spin S = 1

2 .

2. Classical properties

At zero temperature the classical system is in its ground state, the configuration with lowest
energy. The exchange energy associated with a bond is given by eij = Si · Sj which in terms
of the polar angles θi, φi of the two atoms can be written as

eij = S2(cos(θi) cos(θj ) + sin(θi) sin(θj ) cos(φi − φj )) (2)

and the magnetic energy for each atom is BS cos(θi) giving a total energy

E =
∑

〈i,j〉
eij + BS

∑

i

cos(θi). (3)

For a cluster of N atoms this is a function of 2N variables. The minimum energy can be
found numerically using standard techniques. We used a Powell method [23], in which the
directions along which minimization takes place in the multi-dimensional space are chosen in
an optimal manner. Once the minimum-energy configuration is known, the magnetization

M = S
∑

i

cos(θi)

can be calculated. We also investigate the susceptibility dM/dB.
At very high B all the atoms are aligned parallel to the field. For the clusters with a single

central atom, reducing B first causes the central atom to rotate until it is antiparallel with the
other atoms. During this process the remaining atoms rotate a small amount away from the
z-direction. There is then a plateau of constant magnetization. Then the parallel alignment of
the atoms on the outer shell(s) starts to break down. This may happen in more than one phase
with different symmetries and well-defined transitions between them.

From the numerical solutions we could determine the symmetry of the configurations.
This enables the energy to be written as a function of only two or three of the variables. In
some cases we could then solve the non-linear equations and explicitly determine the equation
of the M–B curve. We could also sometimes determine analytically the crossover fields to
states of different symmetry. In the following results these fields are given by algebraic values.
However, this was not always possible, and then the M–B curve and the crossover points had
to be determined numerically, albeit as accurately as desired.

2.1. OCT-6

There are two regions.

(a) 0 < B � 3. The magnetization is given by M = B with constant susceptibility χ = 1.
The ground state in this region is highly degenerate. Spins on opposite corners of the
octahedron are parallel, and for each nearest-neighbour triangle the total spin of the three
atoms, Stri , is given by Sxtri = S

y

tri = 0, Sztri = M/2.
(b) B � 3. The magnetization is M = 3 with all the spins aligned parallel to the field.
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2.2. FCC-12

There are two regions.

(a) 0 < B � 3. The magnetization is given by M = 2B with constant susceptibility χ = 2.
The ground state in this region is highly degenerate. Spins on opposite corners of each
square face of the cluster are parallel, and for each nearest-neighbour triangle the total
spin of the three atoms, Stri , is given by Sxtri = S

y

tri = 0, Sztri = M/2.
(b) B � 3. The magnetization is M = 6 with all the spins aligned parallel to the field.

2.3. FCC-13

There are four regions.

(a) 0 < B � 2.5. The magnetization is given by M = 0.5 + 2B. In this region
for each nearest-neighbour triangle the total spin of the three atoms, Stri , is given by
Sxtri = S

y

tri = 0, Sztri = (M + 0.5)/4.
(b) 2.5 < B � 5.5. The magnetization is constant: M = 5.5. Here the central atom is

aligned antiparallel to the field, with all other atoms parallel to it.
(c) 5.5 < B � 6.5. The magnetization is given by M = B. The atoms all lie in the same

vertical plane which can be chosen as the xz-plane. Here sin(θ1) = 12 sin(θ2)with φ1 = 0
and φ2 = π , where θ1, φ1 are the polar angles of the central atom and θ2, φ2 the polar
angles of all the other atoms.

(d) B > 6.5. The magnetization is constant: M = 6.5.

The first two regions have a similar behaviour to the FCC-12 cluster, except that M → 0
in FCC-12 andM → 0.5 in FCC-13 asB → 0. The magnetization curve for FCC-13 is shown
in figure 2.
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Figure 2. Quantum and classical magnetization at T = 0 of the FCC-13 cluster.
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2.4. FCC-19

There are six regions.

(a) 0 < B < Bc1 where Bc1 ≈ 0.9331. The magnetization increases monotonically from
M ≈ 0.2979 at B = 0 to M ≈ 2.18 at B = Bc1.

(b) Bc1 < B < Bc2 where Bc2 ≈ 2.7330. The magnetization is given by M = 7
3B.

(c) Bc2 < B < Bc3, where Bc3 = (11 − √
17)/4 ≈ 3.7808. The magnetization increases

monotonically from M ≈ 6.377 to M = 8.5.
(d) Bc3 < B < Bc4 where Bc4 = (17 +

√
17)/4 ≈ 5.2807. The magnetization is constant at

M = 8.5.
(e) Bc4 < B < Bc5 where Bc5 = (19 +

√
57)/4 ≈ 6.6375. The magnetization increases

monotonically from M = 8.5 to M = 9.5.
(f) B > Bc5. The spins are all aligned parallel to the field and the magnetization is constant

at M = 9.5.

Figures 3 and 4 show the magnetization and the susceptibility over the whole range.
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Figure 3. Quantum and classical magnetization at T = 0 of the FCC-19 cluster.

2.5. ICO-12

There are three regions.

(a) 0 < B < Bc1 where Bc1 ≈ 1.470. The magnetization increases monotonically from
M = 0 to M ≈ 2.359.

(b) Bc1 < B < Bc2 where Bc2 = (5 +
√

5)/2 ≈ 3.6180. The magnetization is given by
M = 1 + 5(2B − 1)/(2Bc2 − 1), with constant susceptibility χ = 10/(2Bc2 − 1).

(c) B > Bc2. The magnetization is constant: M = 6, with all spins aligned parallel to the
applied field.
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Figure 4. Classical susceptibility at T = 0 of the FCC-19 cluster.

2.6. ICO-13

There are five regions.

(a) 0 < B < Bc1 where Bc1 ≈ 0.969. The magnetization increases monotonically from
M ≈ 0.263 to M ≈ 1.857. The symmetry in this region is one in which the twelve shell
atoms are arranged in four groups of three. The atoms in each group of three have the same
z-component and have equal angular spacing around the z-axis. An analytic formula for
M has not been obtained for this region. AtBc1 there is discontinuity in the magnetization
which jumps from ∼1.857 to ∼2.054.

(b) Bc1 < B < Bc2 where Bc2 = (4 +
√

5)/2 ≈ 3.1180. The magnetization is given by
M = 0.5 + 5B/Bc2, with constant susceptibility χ = 5/Bc2. The symmetry in this region
is that the central atom and two atoms on opposite corners of the shell point antiparallel
to the field, while the remaining atoms all have the same z-component and equal angular
spacing around the z-axis.

(c) Bc2 < B < 5.5. The magnetization is constant: M = 5.5.
(d) 5.5 < B < 6.5. The magnetization is given by M = B.
(e) B > 6.5. The magnetization is constant: M = 6.5, with all spins aligned parallel to the

applied field.

The first three regions show a marked similarity to the regions observed in the ICO-12
model, with the exception that M → 0 for ICO-12 but M → 0.263 for ICO-13 as T → 0.
The magnetization for all five regions is shown in figure 5, and the susceptibility in figure 6.

2.7. HCP-12

This is similar to FCC-12 and again there are two regions.

(a) 0 < B � Bc1 where Bc1 = 3.257 07. The magnetization increases monotonically from
0 to 6. The curve is not a straight line and the gradient dM/dB decreases from about
1.86 to about 1.81 over the region. The three upper and three lower atoms all have equal
z-component and are spaced equally around the z-axis. The six central atoms again have
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Figure 5. Quantum and classical magnetization at T = 0 of the ICO-13 cluster.
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Figure 6. Classical susceptibility at T = 0 of the ICO-13 cluster.

equal z-component and are arranged in two groups of three, each of which is spaced
equally around the z-axis. AsM → 0 all the atoms become oriented perpendicular to B.
The value of Bc1 is 3 +

√
3 cos(2α) where α is the solution of

√
3 cos(3α) + sin(α) = 0. (4)

(b) B � Bc1. The magnetization is constant: M = 6.

2.8. HCP-13

This is similar to FCC-13 and again there are four regions.
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(a) 0 < B � Bc1 where Bc1 = 2.757 07. This region is very similar to the corresponding
region in HCP-12. The magnetization increases monotonically from M0 to 5.5 where
M0 ≈ 0.4299. Again the gradient dM/dB decreases from about 1.86 to about 1.81 over
the region. The value of Bc1 is 5/2 +

√
3 cos(2α) where α is the solution of equation (4).

The value of M0 is not known in closed form.

(b) Bc1 < B � 5.5. The magnetization is constant: M = 5.5. Here the central atom is
aligned antiparallel to the field, with all other atoms parallel to it.

(c) 5.5 < B � 6.5. The behaviour is the same as for FCC-13.

(d) B > 6.5. The behaviour is the same as for FCC-13.

3. Quantum ground states

The principal difference between a finite quantum spin system and the corresponding classical
system at T = 0 is that the quantum system shows a series of discrete steps in the
magnetization–field curves. To obtain the quantum curve, the Hamiltonian with B = 0 is
diagonalized to find all the eigenvalues. Only the lowest eigenvalue for each SzT = M is
needed. If this isEM , then the energy as a function of field isEM −BM . As the field increases
the energy of a state with a larger value of M will cross that with a lower M and there will be
a step in the curve.

The exact pattern of the steps depends on the EM , but the number of steps is always equal
to or less than NS where N is the number of atoms in the cluster and S the spin. We usually
observed steps of one unit in these systems although for the FCC-12 and FCC-13 clusters there
are larger jumps. Larger jumps are more common in the Ising case as shown by Merikoski
et al in 1997 [22] and result in fewer than the maximum number of steps.

We are interested to see if the classical results of the previous section can shed any light
on the behaviour of the corresponding quantum system. The simplest case is OCT-6 in which
the classical magnetization curve is a straight line and the quantum steps have corners lying
on this line as shown in figure 7.
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Figure 7. Quantum and classical magnetization at T = 0 of the OCT-6 cluster.
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For the FCC-12 and FCC-13 clusters the classical magnetization curve is again very simple
but we find that the quantum behaviour is more complicated and shows steps of variable width
(see figure 2). In both cases there seems to be a region where the width of the steps decreases
with increasing field but this behaviour breaks down at low fields. The FCC-13 cluster has a
single extra step at high field where the central spin reverses corresponding to the high-field
classical region.

The three other systems show a more complicated classical behaviour. Firstly consider
the ICO-12 and ICO-13 cases, which are rather similar apart from the extra step at high field
for the latter. The lower-field region where the magnetization is changing is in two parts,
0 < B < Bc1 and Bc1 < B < Bc2 with different magnetization curves (see figures 5 and 6).
A close examination of the quantum magnetization curves shows that the step widths do not
decrease monotonically. There is a change at a value of B which roughly corresponds to Bc1.
For the ICO-13 system a very similar behaviour is observed for the lowest two regions, again
with a change at roughly B = Bc1. The steps shown on the quantum curve in figure 5 occur
at B = 0.8681, 1.4530, 2.1327, 2.7162, 3.1180 and 6.5.

The most complex case is the FCC-19 system, which is to be expected since this has a
central atom surrounded by two shells. Again the reversal of the central atom at high field
corresponds to a single step at B = Bc5. At lower fields the three classical regions bounded
by B = 0, Bc1, Bc2 and Bc3 appear to correspond roughly to three quantum regions in which
the widths decrease monotonically with breaks in the monotonic decrease at similar values of
B to the classical case. The curves are shown in figure 3.

We conclude that there is some weak evidence that transitions between states of different
symmetry observed in a classical systems may have corresponding transitions in quantum
systems, indicated by a change in the trend of the step widths. On the other hand, changes
in step width behaviour in the quantum systems do not seem to necessarily indicate that the
classical system has a corresponding transition, as the FCC-12 and FCC-13 systems show.

4. Non-zero temperature

Since these systems have small numbers of atoms it is possible in the quantum case to calculate
all the eigenvalues and hence the partition function. From this the non-zero temperature
properties can be found. A similar calculation is much more difficult for the classical system
as it involves integration over 2N variables, the orientational angles of the N spins. We have
not attempted this, so our results are confined to the quantum systems.

Figures 8 and 9 show the magnetization–B curves for the FCC-13 and ICO-13 systems at
various temperatures.

The features are very similar to those of the Ising systems apart from the differences noted
in the previous section. In particular, we also find small ranges ofB in which the magnetization
increases with temperature, although the effect is not so pronounced because there are no large
magnetization steps in the ground state.

5. Specific heat

From the partition function Z0 and the related functions Z1 and Z2 of the quantum systems
the specific heat can be calculated. The functions are defined by

Zn =
∑

i

(Ei)
n exp(−Ei/T ) (5)
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Figure 8. Quantum magnetization at various T of the FCC-13 cluster.
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Figure 9. Quantum magnetization at various T of the ICO-13 cluster.

where {Ei} are the eigenvalues of the cluster in the presence of the magnetic field B. Z0 is the
usual partition function, and 〈E〉 = Z1/Z0 etc.

The specific heat is given by

C = 1

T 2
(〈E2〉 − 〈E〉2) = 1

T 2

Z0Z2 − Z2
1

Z2
0

. (6)

A plot ofC as a function ofB and T is shown in figure 10. for the ICO-13 cluster. The specific
heats for other clusters show similar features.



Small clusters with Heisenberg antiferromagnetic exchange 8679

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

ICO−13

B

T

C(B,T)

Figure 10. Specific heat per atom as a function of B and T of the ICO-13 cluster.

At low temperatures, T � J , the specific heat varies rapidly with B, showing a series
of double peaks, before tending to 0 at high B where the ground state has all spins aligned
with a large gap to the first excited state. The double peaks (most obvious near B = 6.5
in the figure) occur at fields where the ground state changes by a crossover of levels. These
fields are precisely those at which steps in the T = 0 magnetization curves occur. The peaks
become very narrow as T → 0 but the height remains finite. The detailed behaviour close to a
divergence is rather complicated in general. However, for a system with just two spin- 1

2 atoms
there is a single crossover at B = 1 from a total spin-0 to a total spin-1 ground state. In this
case the specific heat at low T is given by

C ≈ x2 sech2(x) where x = (1 − B)

2T
(7)

and this is plotted in figure 11.
The double peak is easily understood as occurring at the points where the level separation

is of the same order as the temperature. It is closely related to the Schottky anomaly in which
the specific heat of a two-level system as a function of temperature has a peak at a temperature
corresponding to the level separation.

Also at low temperatures in figure 10 it will be noticed that there appear to be plateaux
in the curves between the peaks at B = 0.8681, 1.4530 and 2.1327. These are due to very
low-lying states with the same SzT as the ground state, and the specific heat would also tend to
0 in these regions at very low T .

For T � J the system behaves effectively as a set of isolated spins and for N spin- 1
2

atoms the specific heat is given by

C = Nx2 sech2(x) where x = B

2T
(8)

which has a single peak at x ≈ 1.2, i.e. B ≈ 2.4T .
The intermediate temperature regime is characterized by a gradual smoothing of the surface

as T increases.
Finally we show in figure 12 the B = 0 specific heat curves for all clusters with N � 13.
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Figure 11. Low-temperature specific heat of a pair of S = 1/2 atoms as a function of B.
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Figure 12. Specific heat curves at B = 0.

6. Conclusions

The stepped structure of the magnetization of small clusters as a function of applied magnetic
field is qualitatively similar to that previously found for Ising clusters of spins. Heisenberg
clusters of spins have more degrees of freedom and for a fixed number of spins there are more
distinct energy levels, i.e. less degeneracy. As step widths are related to transitions in the
ground state due to level crossings, they are typically smaller for Heisenberg systems.
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As very small clusters, exemplified by the octahedron, have simple energy level structures,
the resulting magnetization curves have a simple structure of regular steps. For larger clusters
the step length shows more variation, but it is difficult to identify any particular pattern, at
least for the clusters considered here. Obviously the structures with a central spin show a long
plateau before the final step which is related to the rotation of the central spin to be parallel to
the applied field. For these small clusters this feature could be used to identify the presence
of a structure with such a central spin. For example the FCC-12 and FCC-13 clusters show a
very similar behaviour apart from this final step in the latter.

One interesting feature found in the Ising clusters [22] was the appearance of intervals of
the applied magnetic field in which magnetization increased with increasing temperature. A
similar effect occurs here, but since most of the transitions involve a change of only one unit
in the z-component of the angular momentum, the effect is often smaller. Another difference
between clusters with an Ising and Heisenberg interactions is that the T = 0 magnetization
curves in the Ising case are independent of S (with appropriate scaling) and so there are no
significant differences between the quantum and classical cases.

The specific heat of spin clusters C = C(T ,B) appears to be a convenient way to obtain
information about the energy level structure of the quantum systems. At very low temperatures
double peaks appear around the applied field values at which there is a level crossing. Each
peak corresponds to a ‘resonance’ between the thermal energy and the level spacing. For
increasing temperature the peaks broaden and begin to merge, but even at reasonably high
temperature individual peaks can still be distinguished in C(B), i.e. at fixed temperature.

The single dominant peak at high temperature is a precursor of the high-B behaviour. For
B � J the Zeeman splitting of the levels dominates over the exchange interaction and the
cluster behaves effectively as N independent spin- 1

2 atoms. The position of the single peak is
at B ≈ 2.4T .

On the other hand, if C(T ) (fixed B), is considered, the low-temperature structure of this
curve depends on the value of B. If B is not close to a T = 0 level crossing, then C = C(T )

normally shows a monotonic increase for increasing temperature until a broad peak appears
which includes contributions from many individual ‘thermal resonances’. For an applied field
close to a level crossing, and for not too large clusters, one should find a separate peak inC(T )
at very low temperatures, resulting from that level crossing, followed later by a broad peak as
above. We exemplify this behaviour in figure 12 for B = 0. It is evident that for increasing
cluster size the plateaux become narrower and contributions from different thermal resonances
begin to merge even at very low temperatures.

Study of these magnetic clusters shows that they have an interesting behaviour as a function
of magnetic field. The classical clusters show clear transitions between states of different
symmetry at certain critical fields. The quantum behaviour is less clear but there is some
evidence of similar changes.

We feel that a more detailed analysis of the quantum clusters would be justified.
In particular it would be useful to analyse the ground states in terms of the irreducible
representations of the point groups of the clusters. This should show whether the S = 1

2
quantum clusters also have transitions between regions of different symmetry.

Higher-spin quantum clusters would also be interesting, partly because they might be
easier to realize experimentally, and partly because they are ‘closer’ to the classical clusters.
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